

High Advance Ratio Testing Experiences

Tom Norman NASA Ames

STAR Meeting - April 30, 2012

Aeromechanics Branch - NASA Ames Research Center

Background

- UH-60A Airloads wind tunnel test conducted in USAF National Full-Scale Aerodynamic Complex (NFAC) 40- by 80-Foot Wind Tunnel (2010)
- One objective was to evaluate production rotor at slowedrotor conditions

UH-60A Slowed Rotor Testing

Objective

 Acquire unique aerodynamic and loads data for non-conventional operating envelopes representative of slowed-rotor configurations

Approach

- Acquire data up to advance ratios of 1.0 by reducing rotor RPM as low as 40% nominal
- Perform parametric sweeps of collective, shaft angle, and advance ratio at 3 different RPM's (100%, 65%, 40%)

Slowed Rotor Test Data Acquired

- Slowed Rotor Testing
 - Collective sweeps at 3 hover tip Mach numbers and 3 shaft angles up to advance ratios as high as 1.0

Thrust (C_T / σ) vs. Advance Ratio (μ)

100%, 65%, and 40% NR

 Detailed analysis of resultant performance, airloads, and structural data in Datta et al (2011)

Outline

- Pre-test Analysis
 - Analysis for "standard" operations
 - Structural limits
 - Rotor loads and motion
 - Dynamic stability and ground resonance
 - Operational issues
 - Analysis for "emergency" operations
 - Tunnel and drive system failures
 - Resultant test procedures, SOF monitoring requirements, and test envelope
- Testing Experience

Structural SOF limits

- Evaluate validity of existing SOF limits
 - Lower RPM reduces CF may change load limits
 - Lower RPM may change SOF area i.e. trailing edge strength
 - Ensure (or add) gages available for safety monitoring

May 3, 2011 7

- Rotor Loads and Motion
 - Perform analysis to estimate rotor loads and control motions to identify clear problem areas
 - High advance ratios have unique control characteristics
 - Thrust vs collective reverses at high mu
 - Long cyclic (or flapping) increases as advance ratio, collective, and/or shaft angle increase
 - Lat cyclic (or flapping) increases as advance ratio increases
 - Rotor motions likely to limit test envelope
 - Ensure clear limits on pitch, flap, and lag

May 3, 2011

- Dynamic Stability and Ground Resonance
 - Perform analysis to estimate dynamic stability at lower RPM
 - Consider stability testing during operations to ensure stable rotor
 - At the minimum, monitor key parameters to look for unexpected behavior
 - Review ground resonance analysis at reduced RPM
 - Avoid RPM's close to predicted modes
 - Evaluate lag dampers at reduced frequency to ensure damping characteristics understood
 - Consider stability testing during operations to ensure stable rotor
 - At the minimum, monitor key parameters to look for unexpected behavior (damper motion, balance channels)

May 3, 2011

Operational Issues

- Even with analysis, still need to be very careful
- Monitor SOF channels and evaluate stability as you go
- Change only one thing at a time make sure that you can go back to original condition safely (no ground resonance crossings)

May 3, 2011

- Unique high advance ratio characteristics drove plan for operation
 - Ensure minimized 1/rev flapping

May 3, 2011 11

Combined Sikorsky/NASA Conclusions/Recommendations

- SOF Monitoring (barchart)
 - Limits for Airloads SOF parameters still valid
 - Add new parameter (MRTEC5_0, max, min, hpp) to barchart to monitor blade TE compression
- Rotor Loads and Motion
 - Vibratory flapping limit needed to protect elastomeric bearing (current SOF limit is already lower than this)
 - Need to ensure flap stops not engaged at 40%RPM
 - Change lower flap stop springs to set engagement at 20-30% RPM
 - Remove upper flap stop spring and safety-wire flap stop in disengaged position
 - Verify correct engagement/disengagement (visual)
 - Running at positive shaft angles provide lowest loads
 - Could run out of control travel at some conditions
 - Cyclic required for min flapping highly dependent on collective and shaft angle
 - Approach conditions slowly to ensure adequate control travel

Combined Sikorsky/NASA Conclusions/Recommendations

- Ground Resonance and Stability
 - Damping coefficient for MR Damper (and subsequent NASA ground resonance analysis) suggests not testing near 80% nominal
 - Remove 80% RPM testing from plan
 - Monitor balance and lag motion for unusual behavior at reduced RPM
 - Damping margins for 1st flap and 1st torsion modes are reduced at lower RPMs
 - Monitor flap and torsion gage for unusual behavior

Combined Sikorsky/NASA Conclusions/Recommendations

- Operational Procedures
 - Test procedures should set RPM prior to raising tunnel speed to ensure don't dwell near 80% RPM
 - This is different from Sikorsky recommendation
 - Ensure SOP's, EOP's are understood and trained for/ practiced
 - On-line dynamics monitoring required per ground resonance/stability recommendations
 - Set up scope with 4 channels referenced to 1/rev
 - Lag damper motion, pitch link load, root flap bending, balance axial force gage (single post), oscillatory only
 - Look for amplitude or waveform changes at non-changing conditions
 - Look for non-harmonic behavior ("beating" of signals)

MG Set Failure Scenario

- NFAC (J. Barnes) performed early analysis of MG set failure and identified safety concerns that could preclude high mu testing
 - NFAC-provided rotor speed and tunnel velocity decay curves suggested that rotor RPM would drop below 75 RPM before tunnel velocity dropped to 15 kt
 - These values are/were the assumed limits for safe operation
 - Suggested that NASA may want to provide updated analysis to substantiate safe operation in this failure scenario

MG Set Failure Scenario

- NASA decided to address concerns in 5 steps
 - Step 1: Provide more realistic rotor speed and 40x80 velocity decay estimates
 - Step 2: Evaluate effects of starting RPM, starting torque/ power, and starting tunnel velocity on rotor speed and advance ratio
 - Step 3: Estimate minimum RPM and/or max advance ratio at which rotor is controllable as well as maximum tunnel speed where no rotor speed is required
 - Step 4: Perform CAMRAD predictions of proposed test envelope to determine expected control and rotor power requirements
 - Step 5: Based on information from steps 1-4, propose conditions at which we can safely test if an MG set failure occurs

Proposed SOP's

- Set Mtip (RPM) and nominal collective (4 deg)
- Set shaft angle
- Slowly increase tunnel speed to match mu
 - No more than 20 knot increments
 - Verify no time history anomalies, low loads
 - Adjust collective to keep power approximately constant (low power)
 - Minimize flapping at all times
- Data acquisition collective sweep
 - Set collective to lowest value near zero power
 - Minimize flapping (no trim controller)
 - Acquire data
 - Perform collective sweep, acquiring data at even increments
 - · Ensure total power is below max allowed for MG set failure at that speed
 - · Return to nominal collective
 - Increase tunnel speed to match next mu and repeat data acquisition
- Return to low speed/hover to change RPM or alpha (until envelope cleared)

Proposed EOP's

- All EOP's identical to full RPM including RPM loss (i.e. MG set failure)
- If RPM loss
 - Ensure W.T. E-stop
 - Minimize flapping at all times
 - Set collective to 3 deg (nominal low power point)
- This approach
 - Minimizes rotor speed decay
 - Minimizes chance for rotor speed increase at high positive shaft angles

Slowed Rotor Test Description

Part of UH-60A Airloads Wind Tunnel Test Program (2010)

Norman, Shinoda, Peterson & Datta, AHS F, 2011

- Slowed to 65% and 40% of Nominal RPM (NR)
 - min RPM and max speed set by safety of flight
 - sets max μ of 1.0
- Special motion & loads monitoring
 - Sikorsky review
- Special operations
 - RPM and shaft change always at zero speed
- Special procedure
 - set RPM, shaft, speed and then sweep collective
 - trim to minimize 1P flapping manually

Summary and Conclusions

- First test of any production rotor at slowed RPM up to μ = 1.0
 - Fundamental characterization of dynamics
 - Exotic database for validation

- As μ increases, θ_{1S} increases, and together with high built-in twist drives advancing side outboard to local compressibility
- Reverse flow drives retreating side inboard center of pressure (c.p.) towards trailing-edge
 - observed new phenomena of reverse chord dynamic stall

Summary and Conclusions

- 3D unsteady pitching moments outboard (nose down) and reverse flow pitching moments inboard (nose up) produce high elastic twist
 - creates high blade structural loads even with negligible total thrust
 - creates dramatic negative lift (entire advancing side at μ =1.0)

 Vibratory hub loads benign due to vanishing 5/rev blade loads stemming from frequency gap between 2nd Flap (3.3/rev) and 1st Torsion (7.3/rev)

Local compressibility and negative lift contribute to performance penalty

